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Abstract 

A large class of visual servo controllers relies on an a priori obtained reference image, captured 
at the desired position and orientation (i.e., pose) of a camera, to yield control signals to regulate the 
camera from its current pose to a desired pose. In many applications, accessibility and economics of 
the operation may prohibit acquisition of such a reference image. This paper introduces a new visual 
servo control paradigm that enables control of the camera in the absence of reference image using a 
set of terminal constraints. Specifically, the desired pose is encoded using the angle of obliquity of the 
optical axis with respect to the object plane and its direction of arrival at the plane. A constrained 
convex optimization problem is formulated over a conic section defined by the terminal constraints to 
yield an error system for the control problem. Subsequently, this work introduces continuous terminal 
sliding mode visual servo controllers to regulate the camera to the desired pose. Lyapunov-based stability 
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analysis guarantees that the origin is a finite-time-stable equilibrium of the system. Numerical simulation 
results are provided to verify the performance of the proposed visual servo controller. 
© 2019 The Franklin Institute. Published by Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Visual servo controllers can be broadly classified into image-based visual servo (IBVS) con- 
trollers, position-based visual servo (PBVS) controllers, and hybrid visual servo controllers. In 

IBVS, control signals are derived based on the difference between the current and the desired
position of the object features in the image plane and by mapping the task-space camera
velocities into the image-space feature velocities using an image Jacobian [1,2] . However, 
since no Euclidean information of the object position and orientation (i.e., pose) is included 

in the controller development, IBVS may induce large and infeasible camera motion [3] .
PBVS, on the contrary, estimates Euclidean pose of the object with respect to the camera
using knowledge of the object’s model or by knowing the camera motion and designs control
signals based on the estimated task-space object pose [1,2,4] . As PBVS is defined in terms
of task-space coordinates, image-space regulation of the features cannot guaranteed. Hybrid 

visual servo controllers, such as 2.5D visual servo control [5] , partitioned IBVS [3] and ap-
proaches in [6,7] , fuse IBVS and PBVS methods to eliminate their individual shortcomings 
by obtaining control signals using image measurements and partial Euclidean reconstruction 

of the object. Within the class of hybrid controllers, 2.5D visual servo controller is widely
studied in part due to its stability guarantees (e.g., [8–21] and the references therein). 

A typical 2.5D visual servoing problem is constructed as a teach by showing (TBS) prob-
lem. In TBS, a camera is a priori positioned at the desired location to acquire a “reference
image”, which encodes the desired pose of the camera with respect to the object as shown
in Fig. 1 – hence the name ‘teach by showing’. The camera is then manually moved back
to its initial pose to capture its current view of the object. The control objective becomes
to reposition the camera at the desired location by means of visual servo control [1,2,5,22] .
To determine the camera motion, the relationship between the current and the reference im-
ages is obtained by computing the homography between the two images using the epipolar 
geometry of the camera. By decomposing the homography, the rotation and the (scaled) trans-
lation between the two viewpoints can be obtained. The obtained rotation enables design of
the angular velocity of the camera while the translation component together with the com-
puted relative depth information can be used to obtain the linear velocity of the camera. For
many applications, however, it may not be feasible to acquire a reference image by a priori
positioning a camera at the desired location. Such applications may include image-guided 

weapon systems, robotic hazardous material handling, robotic fruit harvesting, and unstruc- 
tured manufacturing facilities, where the classical 2.5D visual servo control framework based 

on homography obtained using the current and the reference image may be prohibitive. A
teach by zooming (TBZ) visual servo controller, that does not rely on the TBS paradigm of
positioning the camera at the desired location, was presented in our prior work [21] . In TBZ,
the reference image encoding the desired pose of the camera was obtained using another 
camera with zooming capabilities. For example, a camera mounted on a satellite zooms on to
an object to acquire a reference image. Subsequently, error dynamics were formulated based 
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Fig. 1. Teach by showing paradigm showing the current and the reference images of an object captured by the 
camera. 
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n 2.5D visual servo control principles to obtain control signals with an objective to match
he current image captured by the non-zooming camera with the reference image acquired by
he zooming camera. Although the TBZ framework does not require positioning a camera at
he desired location, a reference image encoding the desired pose is necessary. In applications,
uch as robotic fruit harvesting, acquiring a reference image for each fruit to be harvested can
e impractical and may adversely affect harvesting economics and fruit picking efficiency. 

Leveraging on our preliminary work in [23] , a new 2.5D visual servo controller is presented
hat does not rely on a reference image. The problem is motivated by applications where a
esired pose of the camera is defined in terms of a set of terminal constraints instead of a
eference image. For example, an autonomous weapon may be required to impact a target
t an orientation that maximizes target penetration [24,25] , while avoiding being detected,
hereby establishing constraints on terminal ballistics. In autonomous fruit harvesting [26,27] ,
he orientation of the robot end-effector with respect to the fruit stem is critical to the success
f fruit detachment [28] . In autonomous landing [29,30] , an approach angle and the wind
irection may dictate the desired orientation of an aircraft at landing. Manufacturing and
roduction processes that require autonomous object manipulation and grasping [31–33] rely
n precise orientation of the tool with respect to the workpiece. Inspired by such applications,
erminal constraints are considered to encode the desired orientation of the camera and are
efined using the desired angle of obliquity and the desired direction of arrival of the camera
t the object plane. The angle of obliquity condition, defined as the angle between the camera’s

ptical axis and the object plane, represents a pencil of lines 1 describing the surface of a right 

1 In the presented formulation, a pencil of lines refers to a set of lines drawn from the camera that intercept the 
lanar object at the desired angle of obliquity. These lines form the lateral surface of a right circular cone with its 
pex at the camera and base on the object plane. Alternatively, the pencil of lines represents the generatrix (i.e., the 
ine segments drawn from the apex of the cone to the perimeter of the base of the cone) of the lateral surface of the 
one. This fact will be exploited to develop a rotation controller for the camera that satisfies the terminal constraints. 
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circular cone. Consequently, the generatrix lines of the cone identify possible orientations of 
the optical axis. Further, the desired direction of arrival may indicate an angle or, in general,
a range of angles (e.g., (0, π /3] ∪ [2 π /3, π ]) of the optical axis with respect to a reference
direction (e.g., local north) in the object plane. Same as the angle of obliquity, the concept of
direction of arrival is motivated by practical applications. For example, the direction of arrival
can be selected to avoid obstacles (e.g., branches and trunk) in robotic fruit harvesting, to
avoid being detected in autonomous weapon systems, or to land an aircraft with headwind. 
Further, the concepts from Euclidean geometry are utilized to establish a relationship between 

the current pose of the camera and the terminal constraints. Since the terminal constraints may
not define a unique orientation of the camera, an optimal desired orientation that minimizes
camera motion is obtained by solving a constrained convex optimization problem on a conic 
section formed by the terminal constraints. By virtue of novel angular mappings, an efficient 
algorithmic solution can be obtained to the optimization problem. Thereupon, a 2.5D visual 
servo control problem is posed considering decoupled rotation and translation control, and 

continuous terminal sliding mode controllers are introduced. In contrast to existing 2.5D 

controllers [14,21,23] , the developed controllers guarantee that the current pose of the camera 
is regulated to the desired pose in finite-time . Extensive simulation results are provided that
validate the performance of the developed controller. 

The main contribution of the paper is in the development of a new terminal constraints
based approach to 2.5D visual servo control that does not rely on a reference image. As
such, the presented control paradigm is not only more practical but also provides greater
operational flexibility since any change in the desired pose can easily be accommodated 

without requiring to recapture a new reference image. Through novel geometric formulations 
the terminal constraints are expressed in a form that is amenable to the classical 2.5D visual
servo control, where the challenge associated with under-constrained desired orientation is 
addressed by solving a constrained convex optimization problem using the presented efficient 
algorithmic solution. Finally, to the best knowledge of the authors, the presented result is
the first to introduce terminal sliding mode control for 2.5D visual servo control systems to
enable stronger - finite-time - convergence guarantees. 

The paper is organized as follows: The geometric relationships between the camera coordi- 
nate frames and the object are developed in Section 2 . The concepts of angle of obliquity and
direction of arrival are formally introduced in Section 3 to facilitate development of terminal
constraints. With an objective to achieve a desired pose defined by the terminal constraints,
rotation and translation controllers are developed and analyzed in Section 4 . Section 5 demon-
strates the performance of the controllers through numerical simulations. 

2. Euclidean reconstruction 

Consider orthogonal coordinate frames F , F 

∗, and F t as shown in Fig. 2 . The time-varying
coordinate frame F is rigidly attached to an on-board camera (e.g., a camera mounted on
a robot end-effector), the stationary coordinate frame F 

∗ is attached to any arbitrary pose
of the camera, and the coordinate frame F t is attached to a stationary object. Without loss
of generality, the frame F 

∗ is considered to coincide with the initial pose of the on-board
camera, i.e., F | t= t 0 , and it is referred to as an auxiliary camera. The unit vectors along the x ,
y , and z coordinate axes of F , F 

∗, and F t are denoted by { ̂  x , ˆ y , ̂  z } , { ̂  x ∗, ˆ y ∗, ̂  z ∗} , and { ̂  x t , ˆ y t , ̂  z t } ,
respectively. The unit vector ˆ z along the z -axis of F is considered to coincide with the optical
axis of the camera. The linear and the angular velocities of the camera expressed in F are
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Fig. 2. Relationship between the coordinate frames F , F 

∗, and F t attached to the current camera, the auxiliary 
camera, and the object, respectively. 

d  

b  

a  

E  

t  

b  

t

m  

w  

i

m  

m  

A  

m

 

a

m  

c
o

enoted by v c (t ) ∈ R 

3 and ω c (t ) ∈ R 

3 , respectively. The object is represented in an image
y four 2 feature points such that the corresponding Euclidean features, O i ∀ i = 1 , 2, 3, 4,
re coplanar and non-collinear. The plane defined by O i is denoted as π , and the unknown
uclidean distance of O i from the origin of F t be s i ∈ R 

3 ∀ i = 1 , 2, 3 , 4 as shown in Fig. 2 .
To relate the coordinate frames, let R ( t ), R 

∗ ∈ SO 

3 denote the rotation from F to F t and F 

∗

o F t , respectively, and the corresponding translation from F to F t and F 

∗ to F t be denoted
y x f ( t ), x ∗f ∈ R 

3 , respectively. From the geometry between the camera coordinate frames and
he object frame, as shown in Fig. 2 , the following relationships can be developed: 

¯  i = x f + Rs i , m̄ 

∗
i = x ∗f + R 

∗s i (1)

here m̄ i (t ) , m̄ 

∗
i ∈ R 

3 denote the Euclidean coordinates of the features points O i expressed
n F and F 

∗, respectively, as 

¯  i (t ) � 

[
x i (t ) y i (t ) z i (t ) 

]T 
, (2)

¯  ∗i � 

[
x ∗i y ∗i z ∗i 

]T 
. (3)

ssumption 1. In Eqs. (2) and (3) , z i (t ) , z ∗i ≥ ε z for any constant ε z ∈ R 

+ . This is a physically
otivated assumption that guarantees that an object is always in front of the camera. 

Using the expressions in Eq. (1) , the relationship between m̄ i (t ) and m̄ 

∗
i can be obtained

s 

¯  ∗i = x̄ f + R̄ ̄m i (4)
2 Image analysis methods can be used to identify planar objects (e.g. using color, texture differences). These 
omputer vision methods can be used to help determine and isolate four coplanar feature points. For the requirement 
f four coplanar and non-collinear feature points, the readers are encouraged to refer to [34] . 
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where R̄ = R 

∗R 

T ∈ SO 

3 and x̄ f = x ∗f − R̄ x f ∈ R 

3 denote the rotation and translation vectors,
respectively, between F and F 

∗. By using the projective relationship, d = n 

T m̄ i , the expres-
sion in Eq. (4) can be written as 

m̄ 

∗
i = 

(
R̄ + 

x̄ f 
d 

n 

T 

)
m̄ i (5) 

where d ( t ) > ε for some positive ε ∈ R denotes the depth, and n(t ) ∈ R 

3 is the unit normal
from F to the plane π as shown in Fig. 2 . To facilitate the subsequent development, the
normalized Euclidean coordinates of the feature points can be expressed in F and F 

∗, denoted
by m i ( t ), m 

∗
i ∈ R 

3 , respectively, as follows: 

m i � 

m̄ i 

z i 
, m 

∗
i � 

m̄ 

∗
i 

z ∗i 
. (6) 

From the expressions in Eqs. (5) and (6) , the rotation and translation between the coordinate
frames F and F 

∗ can now be related in terms of the normalized Euclidean coordinates of
the features as 

m 

∗
i = 

(
z i 
z ∗i 

)
︸ ︷︷ ︸ 

(
R̄ + x h n 

T 
)︸ ︷︷ ︸ m i 

αi H 

(7) 

where αi (t ) ∈ R denotes the depth ratio, H (t ) ∈ R 

3 ×3 denotes the Euclidean homography
[35] , and x h (t ) ∈ R 

3 denotes the scaled translation vector that is defined as x h = x̄ f /d . 
Each Euclidean feature point O i will have a projected pixel coordinate in the current and

the auxiliary camera as 

p i � 

[
u i v i 1 

]T 
, p 

∗
i � 

[
u 

∗
i v ∗i 1 

]T 
(8) 

where p i ( t ), p 

∗
i ∈ R 

3 represent the pixel (i.e., image-space) coordinates of the feature points
expressed in F and F 

∗, respectively, and u i ( t ), v i ( t ) , u 

∗
i , v 

∗
i ∈ R . 

To calculate the Euclidean homography given in Eq. (7) using the pixel information in
Eq. (8) , the projected pixel coordinates are related to the normalized Euclidean coordinates 
by a pin-hole camera model as 

p i = Am i , p 

∗
i = Am 

∗
i (9) 

where A ∈ R 

3 ×3 is a known, constant, and globally invertible intrinsic camera calibration 

matrix of the form given in [21] . By substituting (9) into (7) , the following relationship can
be obtained: 

p 

∗
i = αi 

(
AH A 

−1 
)︸ ︷︷ ︸ p i 

G 

(10) 

where G ( t ) = [ g i j (t )] ∈ R 

3 ×3 ∀ i, j = 1 , 2, 3 denotes a projective homography. The projective
homography is defined up to a scalar multiple, i.e., g 33 = 1 . A set of eight linear equations
can be developed from Eq. (10) using the four feature point correspondences to determine 
the eight unknowns in G ( t ), and various techniques (e.g., see [34] ) can be used to decompose
the Euclidean homography, to obtain αi ( t ), n ( t ), x h ( t ), R̄ (t ) . 

In standard visual servo control problems, the relationship in Eq. (10) is obtained using fea-
ture points seen in the current image and an a priori acquired reference image corresponding
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Fig. 3. The angle of obliquity ψ( t ) and the direction of arrival β( t ) of the camera along with the terminal angular 
constraints, ψ d and βd . 
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o a desired pose. The homography decomposition, as a result, provides the required rotation
nd translation components to regulate the camera from its current pose to the desired pose.
n the absence of reference image, the feature points viewed by the auxiliary camera F 

∗ do
ot provide meaningful rotation and translation information for regulation. However, the depth
atio αi ( t ) and the unit normal n ( t ) establish a weak relative pose between the camera F and
he object F t . The relative pose in terms of αi ( t ) and n ( t ) is considered to be weak because
hese parameters cannot fully constrain the camera to yield a unique pose. Specifically, αi ( t )
nly provides the relative depth of the feature plane from F , and n ( t ) can only partially iden-
ify the orientation of F t with respect to F . Nevertheless, the subsequent development will
xploit this weak relative pose information to formulate a new visual servo control approach
hat does not rely on a reference image. 

. Definitions 

In the absence of a reference image, the presented visual servo controller uses terminal
ngular constraints to define the desired orientation of the camera. Motivated by practical ex-
mples, the following two new definitions are introduced to facilitate development of terminal
onstraints: 

efinition 1 (Angle of Obliquity) . The angle of obliquity ψ( t ) ∈ (0, π /2] is defined as the
ngle made by the camera’s optical axis with the feature point plane, i.e., the angle between
he z -axis of frame F and the plane π as shown in Fig. 3 . 

efinition 2 (Direction of Arrival) . The direction of arrival β( t ) ∈ [0, 2 π ) is defined as the
ngle between a reference direction ν̄ (e.g., the local north) with respect to the object plane
nd the projection of the camera’s optical axis on the object plane as shown in Fig. 3 . 
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The terminal constraints are defined in terms of the desired angle of obliquity ψ d and the
desired direction of arrival βd . The angle of obliquity constraint provides the desired angle of
the camera’s optical axis with respect to the feature plane, i.e., ψ d ∈ (0, π /2]. The direction of
arrival can be an angle or, in general, a range of possible angles. This is motivated by the fact
that some applications may require the direction of arrival to not take certain values βx (e.g.,
to avoid obstacles or being detected) while permitting the rest, i.e., βd = [0, 2π) \ βx . To this
end, the direction of arrival constraint can be expressed as a union of k ∈ N pairwise disjoint
closed intervals βd = [ βd1 , βd1 ] ∪ [ βd2 , βd2 ] ∪ · · · ∪ [ βdk , βdk ] , where 0 ≤ βd1 ≤ βd1 < βd2 ≤
βd2 < · · · < βdk ≤ βdk < 2π . The “gaps” between these intervals represent the proscribed 

directions of arrival. 
Corresponding to the desired angle of incidence, the optical axis of the camera can be

represented by a pencil of lines intersecting the feature plane π at an angle ψ d , describing
generatrix lines of a right circular cone S c as shown in Fig. 3 . The apex of S c coincides with
the origin of F and the unit normal n ( t ), defined in Eq. (5) , coincides with the height of
the cone, such that any orientation of F with its z -axis directed along any generatrix of the
lateral surface will satisfy the desired angle of obliquity constraint. From the definition of βd 

above, the direction of arrival can be a singleton, or it can be represented as a union of k
closed intervals describing sectors of the base of the cone as shown by the hatched regions
in Fig. 3 . Consider the case when the direction of arrival is a singleton, i.e., βd ∈ [0, 2 π ).
Then, βd together with ψ d obtain a generatrix along which the optical axis can be pointed
to satisfy the constraints. However, it should be noted that the roll angle about the optical
axis is not uniquely defined. When βd is represented using k closed intervals, an infinitely 

large number of solutions (i.e., generatrix lines) can be obtained that satisfy βd . Therefore, 
the challenge is to uniquely identify the desired orientation of F that will satisfy the terminal
angular constraints. Since the optical axis is in the null-space of the rotation about z -axis,
the roll angle about the optical axis does not affect ψ d and βd . Therefore, the objective of
identifying the desired orientation of the camera reduces to obtaining a generatrix of S c that
satisfies the terminal constraints. A unique generatrix is obtained in Section 4.1 by posing a
constrained optimization problem that minimizes camera motion. 

4. Controller development 

4.1. Rotation controller 

The objective of the presented visual servo controller is to ensure that the camera is
regulated to the object plane while satisfying the terminal angular constraints. Specifically, 
the orientation of F is regulated to an orientation defined by a desired angle of obliquity ψ d 

and a desired direction of arrival βd . Mathematically, the rotation control objective can be
defined as 

ψ(t ) → ψ d ∀ ψ d ∈ (0, π/ 2) , β(t ) → βd . (11)

Remark 1. When the objective is to arrive normal to the plane, ψ d = π/ 2, the generatrix
lines coincide with the axis of S c , i.e., the cone reduces to a line perpendicular to the object
plane along n ( t ). Therefore, the desired orientation of the camera is such that the optical axis is
directed along n ( t ) (see Fig. 3 ). Further, since the cone reduces to a line, from Definition 2 , βd 

is not defined. Controller development for the singular case when ψ d = π/ 2 will be presented
in Section 4.1.1 . 
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Fig. 4. Geometrical construction to identify the desired orientation of the optical axis that intersects feature plane π . 
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The objective, as stated in (11) , is to intersect the plane π at the desired angle of incidence
 d and from the desired direction of arrival βd . As discussed in Section 3 , a desired generatrix

an be obtained by minimizing the rotation between the optical axis and the generatrix lines
hat satisfy βd . Subsequently, the rotation control objective can be satisfied by directing the
ptical axis along the desired generatrix. 

The optimization problem can be stated as finding a generatrix, among all the generatrix
ines that satisfy βd , that is at a minimum distance from the unit vector ˆ z along the optical
xis. Consider a plane P c parallel to the base of the cone and at a unit height from the apex
s shown in Fig. 4 . The intersection of the generatrix with P c describes a circle C centered
t n(t ) ∈ R 

3 and of radius r = cot ψ d . 
Let l(t ) ∈ R 

3 be the unit vector along the reference direction ν̄ ∈ R 

3 measured in F and
(t ) ∈ R 

3 be a unit vector, such that { l , m , n } form the basis of a right-handed orthogonal
oordinate frame with origin at the origin of F . Now consider the projection of ˆ z onto the
m -plane, denoted by z lm 

(t ) ∈ R 

3 , which can be obtained as z lm 

= ˆ z − n〈 n, ̂  z 〉 , such that the
ngle between z lm 

( t ) and l ( t ), i.e., the direction of arrival, is β = cos −1 (〈 l, z lm 

〉 / | z lm 

| ) for
( t ) ∈ [0, 2 π ), where 〈 a , b 〉 indicates the inner product between a and b . Let φ ∈ [0, 2 π ) be

he angle of rotation about n measured with respect to a vector that is rotated through π + β

ith respect to l in the lm -plane, and φ′ (t ) ∈ [ π + β, 3 π + β) be defined as φ′ � π + φ + β.
The circle C can then be parameterized in terms of φ′ ( t ) as 

p c = n + cot ψ d 
(
cos (φ′ ) l + sin (φ′ ) m + 0n 

)
= n + cot ψ d w(φ′ ) (12)

here w(φ′ ) = cos (φ′ ) l + sin (φ′ ) m + 0n, and the locus of points p c (φ
′ , t ) ∈ R 

3 measured in
for φ′ (t ) ∈ [ π + β, 3 π + β) for every fixed t ≥0 define C. 
The squared distance h(φ′ , t ) : [ π + β, 3 π + β) × [0, ∞ ) → R 

+ from ˆ z to any point p c ( φ′ ,
 ) of the circle can be written as 

 = 〈 (n − ˆ z ) , (n − ˆ z ) 〉 + cot ψ 

2 
d + 2〈 (n − ˆ z ) , w〉 cot ψ d . (13)
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The function h ( φ′ , t ) satisfies the following properties: 

Property 1. H t ( φ′ ) := h ( φ′ , t ) is a positive definite function of φ′ ( t ) for every fixed t ≥0, i.e.,
H t ( φ′ ) > 0 ∀ t. 

Property 2. H t ( φ′ ) is a real-valued smooth function of φ′ ( t ) for every fixed t ≥0 . 

Property 3. H t ( φ′ ) is a unimodular function of φ′ ( t ) for every fixed t ≥0 as there exists
ˆ φ′ ∈ [ a, b] for any a < b and [ a, b] ⊆ [ π + β, 3 π + β) such that H t ( φ′ ) is decreasing for
φ′ ∈ [ a, ˆ φ′ ] and increasing for φ′ ∈ [ ̂  φ′ , b] . H t ( φ′ ) has no local minima and exhibits a unique
global minimum. The linear map ( φ, β) �→ φ′ defined previously guarantees unimodularity of
H t ( φ′ ), and yields the global minimum at φ′ = 2π + β. 

If, for any fixed t ≥0, n(t ) = ˆ z , i.e., the optical axis is directed normal to the object plane
and ψ d � = π /2, then H t ( φ′ ) is not unimodular. This is due to the fact that, for n(t ) = ˆ z , every
point P t ( φ′ ) := p c ( φ′ , t ) on C is equidistant from ˆ z , which is directed towards the center of
C. Specifically, at n(t ) = ˆ z and ψ d � = π /2, H t (φ

′ ) = cot ψ 

2 
d is a constant function. However,

this degenerate case can be avoided by designing a controller that ensures n(t ) � = ˆ z when
ψ d � = π /2 to preserve unimodularity of H t ( φ′ ) . 

Property 4. h(φ′ , t ) ∈ R is a continuously differentiable function of time. To prove, consider
the time derivative of h ( φ′ , t ) as 

dh 

dt 
= 2 

〈
(n − ˆ z ) , 

dn 

dt 

〉
+ 2 cot ψ d 

〈
w, 

dn 

dt 

〉
+ 2 cot ψ d 

〈
(n − ˆ z ) , 

dw 

dt 

〉
(14) 

where, using the definitions of w(φ′ ) and φ′ ( t ), d w/d t = (d β/d t )(d w/d φ′ ) . Further, w(φ′ )
is a smooth function of φ′ ( t ) for every fixed t ≥0 . For continuous linear and angular motion
of the camera, the position and orientation of F with respect to any stationary coordinate 
frame is continuously differentiable. As a result, β( t ) is a continuously differentiable function.
Further, it is clear from the kinematics of the unit vector, ˙ n (t ) = −[ ω c ] ×n(t ) , that n ( t ) is a
continuously differentiable vector field. Consequently, from Eq. (14) , it is evident that dh / dt
exists and is continuous in R . Example: Fig. 5 shows the distance h ( φ′ , t ) of an arbitrarily
moving point from a circle in R 

3 . 

The direction of arrival constraint βd can be mapped to φ′ 
d ⊆ [ π + β, 3 π + β) . Con-

sider the general scenario when βd is given by a union of k closed intervals as βd =
[ βd1 , βd1 ] ∪ [ βd2 , βd2 ] ∪ · · · ∪ [ βdk , βdk ] as discussed in Section 3 . Let j = 1 , 2, . . . , k denote

the k intervals, and let the intervals be written as [ βd j , βd j ] . Corresponding to these k intervals,

let [ φ′ 
dq , φ

′ 
dq ] for q = 1 , 2, . . . , k ′ be the intervals that are mapped to [ π + β, 3 π + β) , which

can be obtained as [ 
φ′ 

dq , φ
′ 
dq 

] 
= 

[ 
2π + βd j , 2π + βd j 

] 
if 0 ≤ βd j ≤ βd j < π + β[ 

φ′ 
dq , φ

′ 
dq 

] 
= 

[ 
2π + βd j , 3 π + β) 

}
if 0 ≤ βd j < π + β and [ 

φ′ 
dq+1 , φ

′ 
dq+1 

] 
= 

[
π + β, βd j 

]
π + β ≤ βd j < 2π[ 

φ′ 
dq , φ

′ 
dq 

] 
= 

[ 
βd j , βd j 

] 
if π + β ≤ βd j ≤ βd j < 2π. (15) 
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Fig. 5. Plot showing distance h ( φ′ , t ) of an arbitrarily moving point from a circle in R 

3 , and the minimum distance 

( t ) as a function of time when βd = [0, 2π) . 
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t can be seen from Eq. (15) that any interval [ βd j , βd j ] such that 0 ≤ βd j < π + β and

+ β ≤ βd j < 2π yields two disjoint sets of φ′ 
d . Therefore, the set φ′ 

d contains equal or
ore number of closed intervals as βd , i.e., φ′ 

d = [ φ′ 
d1 , φ

′ 
d1 ] ∪ [ φ′ 

d2 , φ
′ 
d2 ] ∪ · · · ∪ [ φ′ 

dk ′ , φ
′ 
dk ′ ] ,

here k ′ ≥k . 

emark 2. Using Eq. (15) and the fact that βd can be given as a union of k closed intervals,
′ 
d will be comprised of at least k pairwise disjoint sets. Since H t ( φ′ ) is a unimodular function
ver φ′ ∈ [ π + β, 3 π + β) ( Property 3 ), it is guaranteed that H t (φ

′ ∈ φ′ 
d ) is unimodular on

ach of its k ′ disjoint sets. 

Recall that the objective is to obtain a generatrix of S c that is at minimum distance from ẑ
nd satisfies the desired direction of arrival constraint β ∈ βd . Based on Eq. (13) , the problem
an be seen as finding a point on C for which H t (φ

′ ∈ φ′ 
d ) is minimized for every fixed t ≥0.

athematically, it can be stated as 

(t ) := arg min 

φ′ ∈ φ′ 
d 

H t (φ
′ ) (16)

here 
(t ) ∈ [ π + β, 3 π + β) is the value of φ′ ( t ) at which the function H t ( φ′ ) attains its
inimum value for φ′ ∈ φ′ 

d for every fixed t ≥0 as shown in Fig. 5 . 

lgorithm. This section describes an algorithmic approach to obtain an optimal solution of
q. (16) . The following scenarios are considered based on βd . 

1. When there is no restriction on the direction of arrival, i.e., βd = [0, 2π) , φ′ 
d takes every

value in its domain φ′ 
d ∈ [ π + β, 3 π + β) . Therefore, Eq. (16) can be considered as an

unconstrained optimization problem for which Property 3 shows that the global minimum
exists at 
 = 2π + β. 
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2. Consider the scenario when βd is a singleton, i.e., βd ∈ [0, 2 π ). Hence, φ′ 
d is also a singleton

and can be obtained using Eq. (15) . Based on the constraint φ′ ∈ φ′ 
d , it is clear that the set

of feasible solutions trivially reduces to a singleton, viz. φ′ = φ′ 
d . Since H t ( φ′ ) is evaluated

at a single value of its argument (i.e., φ′ 
d ), it may not be regarded as the minimum solution.

However, φ′ = φ′ 
d provides the orientation of the camera that satisfies the desired direction 

of arrival. Therefore, with slight abuse of notation, let the solution be written as 
 = φ′ 
d 

to facilitate subsequent development. 
3. Consider the scenario when βd = [ βd1 , βd1 ] ∪ [ βd2 , βd2 ] ∪ · · · ∪ [ βdk , βdk ] . The following

two cases exist based on the present direction of arrival β( t ) with respect to βd . 
(a) ( β ∈ βd ) The solution of the unconstrained optimization problem in scenario 1 shows

that the global minimum exists at 2π + β. Hence, although βd � = [0, 2 π ), if β ∈ βd , then
using Remark 2 and Property 3 it can be shown that the solution of Eq. (16) nevertheless
remains at 
 = 2π + β. 

(b) ( β �∈ βd ) If β �∈ βd then we seek a solution closest to 2π + β that satisfies the constraint
φ′ ∈ φ′ 

d . Let j ∗ ∈ [1, k ′ ] be an interval of φ′ 
d that is closest to 2π + β, which can be

identified as 

j ∗ = arg min j 

(
min 

(
| 2π + β − φ′ 

d j | , | 2π + β − φ′ 
d j | 

))
. (17) 

Therefore, based on Remark 2 , the solution of Eq. (16) can be obtained as 


 = 

{ 

φ′ 
d j ∗ if φ′ 

d j ∗ < 2π + β

φ′ 
d j ∗ if φ′ 

d j ∗ > 2π + β
(18) 

Property 5. When βd is comprised of k ′ disjoint sets, using Properties 3 and 4 , it can be
concluded that 
( t ) is a piecewise continuously differentiable function of t. Specifically, the
trajectory of 
( t ) is continuously differentiable within each of the k ′ sets and exhibits a jump
discontinuity at time t ′ > 0 if and only if the optimal solution 
( t ′ ) falls in another set. 

When βd is unconstrained, βd = [0, 2π) , 
( t ) is a continuously differentiable function of t.
Also, when βd is singleton, βd ∈ [0, 2 π ), 
( t ) is a continuously differentiable function of t. 

Let z̄ d (t ) ∈ R 

3 be a vector along the generatrix of S c corresponding to the optimal solution

( t ) in Eq. (16) as shown in Fig. 4 . Using the expression in Eq. (12) , z̄ d (t ) can be obtained
as 

z̄ d = n + cot ψ d w(
) (19) 

such that z̄ d is at the minimum angular distance from ˆ z , and when the optical axis is directed
along z̄ d , the camera satisfies ψ = ψ d and β ∈ βd constraints. 

Remark 3. Consider the case when the direction of arrival is unconstrained, i.e., βd = [0, 2π) .
Taking the derivative of Eq. (13) with respect to φ′ ( t ), the following expression can be ob-
tained: 

dh 

dφ′ = 2 

〈
(n − ˆ z ) , 

dw 

dφ′ 

〉
cot ψ d . (20) 

From the definition of w(φ′ ) in Eq. (12) , we get w · d w/d φ′ = 0. Since n · w = 0, it can
be shown that w is parallel to the projection of ( ̂  z − n) onto the plane P c := 〈 n, (p c − n) 〉 ,
where p c ( φ′ , t ) is defined in Eq. (12) . Therefore, the closed form expression for z̄ d (t ) in
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q. (19) can be obtained as 

¯ d = n + cot ψ d 
z̄ p − n 

| ̄z p − n| (21)

here z̄ p (t ) ∈ R 

3 is the projection of ˆ z onto the plane P c as shown in Fig. 4 . The vector
 ̄z p − n) in Eq. (21) can be obtained as 

¯ p − n = ˆ z − n − 〈 n, ( ̂  z − n) 〉 n. (22)

or βd = [0, 2π) , the expressions in Eqs. (21) and (22) provide the desired orientation of the
amera without the knowledge of its direction of arrival β( t ). 

As stated previously, the rotation control objective is to regulate the orientation of the
amera coordinate frame F such that the optical axis ( z -axis) is along z̄ d (t ) , i.e., along the
esired generatrix. To quantify the angular mismatch between ˆ z and a unit vector, say ˆ z d (t ) ,
long z̄ d (t ) , a rotation error-like signal, denoted by e ω (t ) ∈ R 

3 , is defined by the angle axis
epresentation as 

 ω � uθ = 

[
e ωx e ωy e ωz 

]T 
(23)

here e ωx ( t ), e ωy ( t ), e ωz (t ) ∈ R are the components of e ω ( t ) about the x , y , and z -axis, re-
pectively. In Eq. (23) , u ( t ) ∈ R 

3 represents a unit axis of rotation such that u = ˆ z ∧ ˆ z d , and
(t ) = cos −1 〈 ̂  z , ̂  z d 〉 ∈ R denotes the rotation angle about u ( t ) that is confined to 0 ≤θ ( t ) < 2 π

see [9] ). Taking the time derivative of Eq. (23) , the open-loop error dynamics for e ω ( t ) can
e expressed as 

˙  ω = −L ω ω c (24)

here L ω ( t ) ∈ R 

3 ×3 is defined as 

 ω � I 3 − θ

2 

[ u] × + 

( 

1 − sinc (θ ) 

sinc 2 ( θ2 ) 

) 

[ u] 2 ×. (25)

n Eq. (25) , the sinc( θ ) term denotes the unnormalized sinc function. At θ (t ) = 2π, it can
e seen that the determinant of L ω is singular, and L 

−1 
ω does not exist. Given the open-loop

otation error dynamics in Eq. (24) and the subsequent stability analysis, the control input
 c ( t ) can be designed as 

 c = �ω diag (| e ω | α ) sgn (e ω ) (26)

here �ω ∈ R > 0 is the known constant control gain, diag( · ) denotes a diagonal matrix, sgn( · )
s a signum function, and α ∈ R is a known constant such that α ∈ (0, 1). It must be pointed
ut that even in the presence of the discontinuous term sgn( e ω ) the angular velocity control
nput ω c ( t ) in Eq. (26) is a continuous function of time [36] . Substituting (26) into (24) gives
he expression for the closed-loop error dynamics as 

˙  ω = −L ω �ω diag (| e ω | α ) sgn (e ω ) . (27)

heorem 1. The rotation controller in Eq. (26) guarantees that the orientation of the camera
oordinate frame F is regulated to a desired orientation defined by ψ d and βd such that the
rigin is a practically globally finite-time-stable equilibrium for the closed-loop system in Eq.
27) . 
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Proof. Consider a positive definite Lyapunov candidate function V ω ( e ω ) as 

 ω = 

1 

2 

e T ω e ω . (28) 

After taking the time-derivative of Eq. (28) and substituting Eq. (27) in the resulting
expression, the Lyapunov derivative can be obtained as 

˙ 
 ω = −e T ω �ω diag (| e ω | α ) sgn (e ω ) (29) 

where the fact that e T ω L ω = e T ω is utilized. e T ω (t ) can also be written as e T ω = sgn (e T ω ) diag (| e ω | ) .
Therefore, the expression in Eq. (29) becomes 

˙ 
 ω = −sgn (e T ω ) 

[ 
�ω diag (| e ω | ) diag (| e ω | α ) 

] 
sgn (e ω ) . (30)

It can be observed that the bracketed quantity in Eq. (30) is a positive definite symmetric
diagonal matrix. As a result, the Lyapunov derivative can be expressed as 

˙ 
 ω = −sgn (| e T ω | ) 

[ 
�ω diag (| e ω | ) diag (| e ω | α ) 

] 
sgn (| e ω | ) (31) 

= −�ω ‖ e ω ‖ α+1 = −�ω (2V ω ) 
μ (32) 

where ‖ · ‖ p denotes the p-norm, and μ = (α + 1) / 2. It can be seen that the Lyapunov deriva-
tive in Eq. (32) is negative definite, ˙ V ω (e ω ) < 0. Based on V ω ( e ω ) > 0 and 

˙ V ω (e ω ) < 0, it
can be concluded that e ω (t ) ∈ L ∞ 

and e ω (t ) ∈ L 2 . Based on the fact that e ω (t ) ∈ L ∞ 

, Eqs.
(23), (24), (26) and (27) can be used to prove that u(t ) , θ (t ) , L ω (t ) , ω c (t ) , ˙ e ω (t ) ∈ L ∞ 

. Using
˙ e ω (t ) ∈ L ∞ 

and Eq. (23) , it is clear that ˙ u (t ) , ˙ θ (t ) ∈ L ∞ 

. Taking the time derivative of Eq.
(27) and using the above arguments, it can be shown that ë ω (t ) ∈ L ∞ 

. Additionally, with
�ω > 0 and α ∈ (0, 1), the rotation controller in Eq. (26) is continuous everywhere and locally
Lipschitz everywhere except at the origin. Thus, according to Theorem 1 in [37] , the origin is
a practically globally finite-time-stable equilibrium of the closed-loop system in Eq. (27) . The 
term practically global is used in lieu of global since the result is not valid for the singular
point θ = 2π associated with the angle of rotation [14] . The upper bound on the convergence
time for e ω (0) → 0 can be obtained as [37] 

 ω (e ω (0)) ≤ 1 

�ω 2 

μ(1 − μ) 
V ω (e ω (0)) 1 −μ = t ′ ω (33) 

where t ′ ω ∈ R > 0 . Hence, the developed rotation controller guarantees that the orientation of
the camera is regulated to the desired orientation defined by ψ d and βd in finite time. �

4.1.1. Singular Case ψ d = π/ 2
As stated in Remark 1 , the control objective of ψ d = π/ 2 can be satisfied by directing

the optical axis along n ( t ) normal to π . However, βd is not defined since the cone S c in
Fig. 3 reduces to a line along n ( t ). Further, p c in Eq. (12) becomes a single point at n ( t ),
independent of φ′ ( t ) or β( t ). Therefore, for this singular case, the rotation control objective is
defined only in terms of the angle of obliquity as ψ → ψ d = π/ 2 or, equivalently, ˆ z → n(t ) .

When ψ d = π/ 2, the rotation error e ω ( t ) can be expressed as the angular mismatch between
ˆ z and n ( t ) as e ω = uθ, where u = ˆ z ∧ n, and θ = cos −1 〈 ̂  z , n〉 . The design of the rotation
controller in Eq. (26) and the subsequent stability analysis remains unchanged. 
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.2. Translation controller 

The controller in this paper is motivated by applications, such as autonomous grasping,
here the objective for the camera is to reach the object. Therefore, the translation control
bjective is to ensure that the camera is regulated to the object plane. Specifically, the position
f the origin of F is regulated to a desired feature O i , for any i . To develop the translation
ontroller, a single feature point can be utilized. Without loss of generality, the subsequent
evelopment will be based on the feature O 1 , and hence, the subscript 1 will be utilized in
ieu of i . Mathematically, the pixel coordinates p 1 ( t ) of O 1 are regulated to the principal point
r image center p d � 

[
0 0 1 

]T 
as the camera approaches π in the sense that 

p 1 (t ) → 

[
0 0 1 

]T 
, z 1 (t ) → 0. (34)

emark 4. Although the objective to regulate the camera to the object plane (i.e., z 1 ( t ) → 0)
iolates Assumption 1 , in practice the camera frame F intercepts π for some set z 1 ∈ [ z min ,
 max ], where z max ≥ z min > εz [38,39] . This is due to the fact that the exact intercept value
epends on the relative position of the camera with respect to the system (e.g., robotic arm,
issile, aircraft) on which it is mounted, which can be obtained by coordinate transformation

sing the camera’s extrinsic calibration parameters [21] . As a result, the Assumption 1 holds
nd singularity due to z(t ) = 0 is avoided. 

Let p e 1 ( t ) ∈ R 

3 denote the extended image coordinates of O 1 as 

p e 1 � 

[
u 1 v 1 α1 

]T 
(35)

here α1 (t ) ∈ R is the depth ratio defined in Eq. (7) . Also, let p ed ∈ R 

3 denote the constant
xtended image coordinates of the desired image point as p ed = 0 3 ×1 , where 0 3 ×1 is a zero
atrix. 
The translation error e v ( t ) ∈ R 

3 can be defined as the difference between p e 1 ( t ) and p ed as

 v � p e 1 − p de = 

[
e vx e vy e vz 

]T 
(36)

here e vx (t ) , e vy (t ) , e vz (t ) ∈ R are the components of e v (t ) along the x , y , and z -axis, respec-
ively. It can be seen from Eq. (36) that when e v (t ) → 0 the feature point O 1 is regulated to
he image center, and the depth of the camera is regulated such that α1 ( t ) → 0, i.e., z 1 ( t ) → 0.

emark 5. Due to the absence of a reference image, the desired depth of the camera can
nly be defined relative to the auxiliary camera F 

∗. Let e vz (t ) in Eq. (36) be defined as
 vz � α1 − αd , where αd = z d /z ∗1 is the desired depth ratio, and z d > 0 is the constant depth
f O 1 corresponding to the desired pose of the camera. However, since z ∗1 is unknown, αd

annot be obtained to regulate the camera to the desired depth z d . Any arbitrarily selected
d can only regulate the camera to a relative depth with respect to the auxiliary camera. The
xception being the case presented in this paper, where z d = 0. This implies that, independent
f the knowledge of z ∗1 , αd = 0. Hence, the camera can be regulated to an absolute desired
osition on the plane π without the knowledge of z ∗1 or reference image. Alternatively, if z ∗1 is
nown or measurable, e.g., using stereo-vision or range identification methods [40–42] , then
d can be defined for the given z d . The knowledge of z ∗1 can thus enable the camera to be
ositioned at any desired depth z d > 0. 
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Taking time-derivative of Eq. (36) and using 

˙ m̄ 1 = −v c + [ ̄m 1 ] ×ω c , the open-loop error
system can be developed as 

z ∗1 ̇  e v = 

1 

α1 
L v v c + z ∗1 L vω ω c (37) 

where L v (t ) , L vω (t ) ∈ R 

3 ×3 are defined as 

L v � 

⎡ 

⎣ 

−a 1 , 1 −a 1 , 2 a 1 , 1 f + a 1 , 2 g 

0 −a 2, 2 a 2, 2 g 

0 0 −α1 

⎤ 

⎦ , (38) 

L vω � 

⎡ 

⎣ 

a 1 , 1 f g + a 1 , 2 + a 1 , 2 g 

2 −a 1 , 1 − a 1 , 1 f 2 − a 1 , 2 f g a 1 , 1 g − a 1 , 2 f 
a 2, 2 + a 2, 2 g 

2 −a 2, 2 f g −a 2, 2 f 
−α1 g α1 f 0 

⎤ 

⎦ . (39) 

In Eq. (39) , f (u 1 , v 1 ) and g(v 1 ) are the auxiliary functions of the image coordinates as below

f = 

1 

a 1 , 1 

[
u 1 − a 1 , 2 

a 2, 2 
(v 1 − a 2, 3 ) − a 1 , 3 

]
, g = 

1 

a 2, 2 

[
v 1 − a 2, 3 

]
(40) 

where a i, j ∈ R ∀ i, j = 1 , 2, 3 represents the known element from the camera calibration matrix
A . 

Based on the open-loop error system in Eq. (37) , the linear velocity control input can be
designed as 

v c = −α1 L 

−1 
v 

(
�v diag (| e v | γ ) sgn (e v ) + ˆ z ∗1 L vω ω c 

)
(41) 

where �v ∈ R 

3 ×3 is the positive definite symmetric diagonal matrix of control gain, γ ∈ R is
a known constant such that γ ∈ (0, 1), ω c (t ) ∈ R 

3 is defined in Eq. (26) , and the time-varying
estimate ˆ z ∗1 (t ) ∈ R of the unknown constant depth z ∗1 is obtained using the direct adaptive
update law as 

˙ ˆ z ∗1 = �e T v L vω ω c (42) 

where � ∈ R > 0 is a known constant gain. Again, it is should be noted that the translation
velocity control input v c (t ) in Eq. (41) is a continuous function of time [36] . Substituting
(41) into (37) the closed-loop system can be obtained as 

z ∗1 ̇  e v = −�v diag (| e v | γ ) sgn (e v ) + ˜ z ∗1 L vω ω c (43) 

where ˜ z ∗1 (t ) ∈ R is the parameter estimation error defined as 

˜ z ∗1 � z ∗1 − ˆ z ∗1 . (44) 

Theorem 2. The translation controller in Eqs. (41) and (42) ensures that the position of the
camera coordinate frame F is regulated to the desired position defined by p 1 ( t ) → p d and
z 1 ( t ) → 0 such that the origin is a practically globally finite-time-stable equilibrium for the
closed-loop system in Eq. (43) . 

Proof. Consider a positive definite Lyapunov candidate function V v1 (e v , ̃  z ∗1 ) as 

 v1 = 

1 

2 

e T v z 
∗
1 e v + 

1 

2 

�−1 ˜ z ∗1 
2 
. (45) 
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v  
aking time derivative of Eq. (45) and substituting the closed-loop system Eq. (43) into the
esulting expression, the Lyapunov derivative can be obtained as 

˙ 
 v1 = −�v e 

T 
v diag (| e v | γ ) sgn (e v ) + e T v ˜ z ∗1 L vω ω c + �−1 ˜ z ∗1 ̇  ˜ z ∗1 . (46)

sing the time derivative of Eq. (44) and substituting (42) , the Lyapunov derivative in Eq.
46) can be simplified as 

˙ 
 v1 = −�v e 

T 
v diag (| e v | γ ) sgn (e v ) . (47)

riting e T v (t ) as e T v = sgn (e T v ) diag (| e v | ) , the Lyapunov derivative can be reduced to 

˙ 
 v1 = −sgn (e T v ) 

[ 
�v diag (| e v | ) diag (| e v | γ ) 

] 
sgn (e v ) (48)

here the bracketed quantity can be observed to be a positive definite symmetric diagonal
atrix. As a result, the Lyapunov derivative becomes 

˙ 
 v1 = −sgn (| e T v | ) 

[ 
�v diag (| e v | ) diag (| e v | γ ) 

] 
sgn (| e v | ) < 0. (49)

ased on V v1 (e v , ̃  z ∗1 ) > 0 and 

˙ V v1 (e v , ̃  z ∗1 ) < 0, it can be concluded that e v (t ) , ˜ z ∗1 (t ) ∈ L ∞
nd e v (t ) ∈ L 2 . Using Eq. (44) and the facts that z ∗1 , ˜ z ∗1 (t ) ∈ L ∞ 

, it can be shown that
ˆ  ∗1 (t ) ∈ L ∞ 

. In addition, since e v (t ) , ω c (t ) ∈ L ∞ 

, the expressions in Eqs. (36), (38), (39), (40) ,
nd (43) can be used to show that L v , L vω , ˙ e v (t ) ∈ L ∞ 

. Using the aforementioned arguments
nd the bounded inverse theorem, it can be concluded that the control input is bounded,
 c (t ) ∈ L ∞ 

. Based on the facts that e v (t ) , ˙ e v (t ) ∈ L ∞ 

and e v (t ) ∈ L 2 , Barbalat’s Lemma can
e evoked to prove that lim t→∞ 

e v (t ) → 0. 
Further, in Theorem 1 , it is proved that the rotation controller guarantees that e ω → 0 in

nite time t ( e ω (0)) with an upper bound t ′ ω as obtained in Eq. (33) . From Eq. (26) , it is clear
hat ω c ( t ) → 0 as e ω → 0. Therefore, after at most t = t ′ ω time, the closed-loop error system
n Eq. (43) reduces to 

 

∗
1 ̇  e v = −�v diag (| e v | γ ) sgn (e v ) ∀ t ∈ [ t ′ ω , ∞ ) . (50)

o prove that the closed-loop system in Eq. (50) is finite-time-stable over t ∈ [ t ′ ω , ∞ ) , consider
 positive definite Lyapunov candidate function V v2 (e v ) = e T v z 

∗
1 e v / 2. Taking time-derivative of

 v2 (e v ) and after substituting (50) and simplifying, the Lyapunov derivative can be obtained
s ˙ V v2 = −�v (2V v2 ) 

ν, where ν = (γ + 1) / 2. Using similar arguments as in Theorem 1 , it
an be proved that the origin is a practically globally finite-time-stable equilibrium of the
losed-loop system in Eq. (50) over t ∈ [ t ′ ω , ∞ ) . The term practically global is used in lieu
f global since the result is not valid for non-positive depths of the objects, z ( t ) ≤0 [14] . The
pper bound on the convergence time for e v (t ′ ω ) → 0 can be obtained as 

(e v (t 
′ 
ω )) ≤

1 

�v 2 

ν (1 − ν) 
V v2 ( e v ( t 

′ 
ω )) 

1 −ν = t ′ v (51)

here t ′ v ∈ R > 0 . From Eqs. (33) and (51) , the bound on the time for e v (0) → 0 can therefore
e obtained as t (e v (0)) ≤ t ′ ω + t ′ v . Hence, the developed translation controller guarantees that
he position of the camera is regulated to the desired position in finite time. �

. Simulation results 

A numerical simulation was performed to demonstrate the performance of the proposed
isual servo controller. With the objective of arriving at the object plane with the desired angle
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Fig. 6. Trajectory of the camera in the (a) 3D Euclidean space and (b) its projection on the xy -plane showing the 
achieved the angle of obliquity ψ and the direction of arrival β. The desired angle of obliquity is ψ d = 70 ◦, the 
desired direction of arrival βd is unconstrained, i.e., βd = [0, 2π ), and the optimal direction of arrival solution is 
obtained as 
 = 187 ◦. The Euclidean features on the stationary object are shown as blue ( ). (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. (a) Rotation error e ω ( t ) and (b) translation error e v (t ) for terminal constraints ψ d = 70 ◦ and βd = [0, 2π) . 

Fig. 8. (a) Angular velocity ω c ( t ) and (b) linear velocity v c (t ) of the camera for terminal constraints ψ d = 70 ◦ and 
βd = [0, 2π) . 
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Fig. 9. Trajectory of the camera in the (a) 3D Euclidean space and (b) its projection on the xy -plane showing the 
achieved the angle of obliquity ψ and the direction of arrival β. The desired angle of obliquity is ψ d = 70 ◦, the 
desired direction of arrival βd is constrained to βd = [3 π/ 2, 2π) , and the optimal direction of arrival solution is 
obtained as 
 = 270 ◦. The Euclidean features on the stationary object are shown as blue ( ). (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. Trajectory of the camera in the (a) 3D Euclidean space and (b) its projection on the xy -plane showing 
the achieved the angle of obliquity ψ and the direction of arrival β. The desired angle of obliquity is ψ d = 70 ◦, 
the desired direction of arrival βd is singleton at βd = π/ 3 , and the direction of arrival solution is 
 = 60 ◦. The 
Euclidean features on the stationary object are shown as blue ( ). (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.) 
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f obliquity and from the desired direction of arrival, the following scenarios are considered.
cenario 1. While keeping the desired angle of obliquity at ψ d = 70 

◦, the direction of arrival
s considered to be (a) unconstrained βd = [0, 2π) ; (b) constrained to a set of angles βd =
3 π/ 2, 2π) ; and (c) singleton β = π/ 3 . The results provide insights into the optimal direction
f arrival solution and how it is enforced by the controller in Eqs. (26), (41) , and (42) .
cenario 2. The performance of the controller was verified when the angle of obliquity was
aried from ψ d = 5 

◦ to ψ d = 85 

◦ in the increment of 10 

◦, while maintaining βd = [0, 2π) .
cenario 3. The singular case, when ψ d = π/ 2, was considered to demonstrate the behavior
f the system using the controller developed for the special case presented in Section 4.1.1 .
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Fig. 11. Trajectories of the camera in the 3D Euclidean space showing the achieved angles of obliquity ψ for 
the desired angles of obliquity from ψ d = 5 ◦ to ψ d = 85 ◦, where the desired angle of arrival is unconstrained 
βd = [0, 2π) . The Euclidean features on the stationary object are shown as blue ( ). (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

The objective of the translation controller in each of the above scenarios is to regulate the
origin of the camera coordinate frame F to the Euclidean feature O 1 . 

5.1. Preliminaries 

Consider a local inertial frame I. Then, the position x I t ∈ R 

3 and orientation R 

I 
t ∈ R 

3 ×3 of
the coordinate frame F t attached to the stationary object with respect to I was considered to
be 

x I t = 

[
6 4 −5 

]T 
m , R 

I 
t = I 3 ×3 (52) 

where I 3 ×3 is an identity matrix. The position x I ∗ ∈ R 

3 and orientation R 

I 
∗ ∈ R 

3 ×3 of the
auxiliary camera coordinate frame F 

∗ (i.e., F | t=0 ) with respect to I was 

x I ∗ = 

[
10 0 −40 

]T 
m , (53) 
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Fig. 12. Trajectories of the camera projected in the xy -plane showing the achieved direction of arrival β for the desired 
angles of obliquity from ψ d = 5 ◦ to ψ d = 85 ◦, where the desired angle of arrival is unconstrained βd = [0, 2π) . 

R  

 

o  

T  

p  

G  

c

5

 

b  

c  
 

I 
∗ = 

⎡ 

⎣ 

0. 2862 −0. 6718 −0. 6833 

0. 7106 −0. 3296 0. 6217 

−0. 6428 −0. 6634 0. 3830 

⎤ 

⎦ . (54)

The Euclidean features on the stationary object were considered to be in the xy -plane
f F t . Without loss of generality, the feature O 1 was considered to be at the origin of F t .
he other features were at O 2 = [3 , 0, 0] T , O 3 = [4. 5 , 3 , 0] T , and O 4 = [0. 75 , 4. 5 , 0] T . The
ixel coordinates of the features seen by the camera were assumed to be corrupted by white
aussian noise of standard deviation 0.1pixel. The reference direction ν̄ in Definition 2 is

onsidered to be the + x-axis of I. 

.2. Results 

The simulation results corresponding to the scenarios described previously are presented
elow. Scenario 1(a). ψ d = 70 

◦, βd = [0, 2π) . Fig. 6 shows the Euclidean trajectory of the
amera along with plane π formed by four feature points on the stationary object. The 3D
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Fig. 13. Image-space trajectories of the feature points for the desired angles of obliquity from ψ d = 5 ◦ to ψ d = 85 ◦, 
where the desired angle of arrival is unconstrained βd = [0, 2π) . The initial (at t = t 0 ) and the final (at t = t f ) 
positions of the features in the image are shown as red ( ) and blue ( ), respectively.(For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 14. Trajectory of the camera in the (a) 3D Euclidean space and (b) its projection on the xy -plane showing 
the achieved the angle of obliquity ψ . The desired angle of obliquity is ψ d = π/ 2. The Euclidean features on the 
stationary object are shown as blue ( ). (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.) 

Fig. 15. Image-space trajectories of the feature points for the desired angles of obliquity ψ d = π/ 2. The initial (at 
t = t 0 ) and the final (at t = t f ) positions of the features in the image are shown as red ( ) and blue ( ), respectively. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.) 
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i  

t
 

c  
uclidean trajectory is shown in Fig. 6 (a), while its projection on the xy -plane is shown in
ig. 6 (b). Using the algorithm in Section 4 , the optimal solution for the desired direction of
rrival was obtained as 
 = 187 

◦. As shown in Fig. 6 (a) and Fig. 6 (b), the achieved angle
f obliquity was ψ(t f ) = 70. 02 

◦ and direction of arrival was β(t f ) = 187 . 04 

◦, where t f > 0
enotes the final simulation time. The rotation and translation errors in Eqs. (23) and (36) ,
espectively, are shown in Fig. 7 , while the corresponding velocity control inputs are shown
n Fig. 8 . It can be seen from Figs. 7 and 8 that all control signals remain bounded at all
imes and reach zero in finite time. 

Scenario 1(b). ψ d = 70 

◦, βd = [3 π/ 2, 2π) . Fig. 9 shows the Euclidean trajectory of the
amera along with plane π formed by four feature points on the stationary object. The selected
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βd was such that β �∈ βd , therefore using Eqs. (17) and (18) , the optimal solution was obtained
to be 
 = 3 π/ 2. From Fig. 9 (a) and 9 (b), it can be observed that the achieved terminal angles
were ψ(t f ) = 70 

◦ and β(t f ) = 269 . 98 

◦. 
Scenario 1(c). ψ d = 70 

◦, βd = π/ 3 . Fig. 10 shows the Euclidean trajectory of the camera
along with plane π formed by four feature points on the stationary object. As discussed in the
algorithm in Section 4 , for singleton βd , the optimal solution becomes 
 = βd = π/ 3 . From
Fig. 10 (a) and 10 (b), it can be observed that the achieved terminal angles were ψ(t f ) = 70. 01 

◦

and β(t f ) = 59 . 85 

◦. 
Hence, it follows that the optimal solution to the direction of arrival is obtained such that

the optical axis coincides with the closest generatrix (permissible by βd constraint) of the 
cone formed by the geometry of the terminal constraints. Subsequently, the rotation controller 
ensures that the orientation of the camera is regulated to satisfy the obtained optimal solution
along with ψ d . 

Scenario 2. ψ d = 5 

◦ to 85 

◦, βd = [0, 2π) . The desired angle of obliquity was varied
from 5 

◦ to 85 

◦ in the increments of 10 

◦, while maintaining the direction of arrival uncon-
strained. Fig. 11 shows the trajectory of the camera in the 3D Euclidean space, and also
shows the achieved angle of obliquity ψ( t f ) for each case. The optimal direction of arrival
solutions, for the cases above, along with the achieved direction of arrival are shown in
Fig. 12 . Fig. 13 shows the image-space trajectory of the features O 1 · · ·O 4 , where the initial
(at t = t 0 ) and the final (at t = t f ) positions of the features in the image are shown as red
‘ ’ and blue ‘ ’, respectively. The figure also shows the plane π as viewed by the camera
at various instances between t 0 and t f . 

Scenario 3. ψ d = π/ 2. The objective is to orient the camera such that the optical axis is
normal to the plane π . As discussed in Section 4.1.1 , βd cannot be defined for this singular
case. The 3D trajectory of the camera in Fig. 14 (a) demonstrates that the developed controller
achieves ψ(t f ) = π/ 2. Fig. 15 shows the image-space trajectory of the features. 

6. Conclusion 

A new paradigm in visual servo control is presented, where a reference image may not
available to determine the camera’s relative pose and evaluate control signals. Motivated by 

practical applications, such as robotic fruit harvesting and manufacturing processes, a visual 
servo control problem is formulated by introducing the notions of angle of incidence and 

direction of arrival that lead to establishing terminal constraints on the pose of the camera.
A constrained convex optimization problem is formulated and an efficient algorithm solution 

is provided to identify the orientation that minimizes the camera motion while satisfying 

terminal constraints. Further, continuous terminal sliding mode controllers are developed for 
the rotation and translation sub-systems, and Lyapunov-based stability analysis guarantees 
that the origin is a finite-time-stable equilibrium of the sub-systems. The applications that can 

benefit from the presented controller include: missile/smart-munition guidance, robotic fruit 
harvesting, manufacturing automation, and robotic hazardous material handling. 

There are multiple avenues for future work. First, we will extend this work to obtain
an optimal solution for the desired direction of arrival by reformulating the optimization 

problem to not only consider the current orientation of the camera but also take into account
its desired position (specifically, the line-of-sight vector to the desired position). An optimal 
solution to such problem will reduce the overall camera motion. Second, the future work
may consider an uncalibrated camera to provide image measurements to robustify against 
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odeling uncertainties and provide a camera-independent approach. Lastly, the field-of-view
FOV) constraints will be included in the optimization model to design a tracking problem
hat will ensure that the object does not leave the camera’s FOV. 
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